
gs-project-manager Docs
Release 0.1

Sep 16, 2021

General

1 About 3

2 Installation 5

3 Tappy Plane Example 7

4 Command 9

5 Project 13

6 YAML Schema Reference 17

7 Settings 21

Index 23

i

ii

gs-project-manager Docs, Release 0.1

Tip: This is documentation for the development (master) branch. Looking for documentation of the current stable
branch? Have a look here.

Welcome to the official documentation of the gs-project-manager. A cross-platform tool, written in Python, to help
you manage your Godot projects consistently and easily.

The table of contents below and in the sidebar should let you easily access the documentation for your topic of interest.
You can also use the search function in the top left corner.

General 1

gs-project-manager Docs, Release 0.1

2 General

CHAPTER 1

About

Thanks for your interest in the godot-stuff Program Manager.

This is a multi-platform Command Line Tool (CLI) that can be used to help you manage your Godot projects.

Project information is controlled using a plain text file in YAML that defines the blue prints of your project.

It stops the problem of wondering what version of Godot you used, and what assets are needed in your projects while
at the same time letting developers on different platforms work together.

I started this project to fill a gap that I felt was present in the management of projects for my Games and Applications
built with Godot. I come from a heavy Java/C# coding background where we have many tools at our disposal to assist
in building and maintaining projects.

This is my crazy attempt to take some of those core ideas, specifically code management, and code re-use with
predictable project building and testing, and make them a core to my Development Workflow.

I must warn you, this is something to scratch my itch, and it won’t be for everyone. I am putting it out here in hopes
that people contribute and make the tool better.

If you can’t wait and want to get started immediately, please have a look at Installation

1.1 Principles

These are the principals behind this tool

• Be Modular - using previously built components when possible speeds development. Packages from the Asset
Library are an example of a Module. Code libraries are also an example of modules. Artwork, to some extent
can also be modular.

• Be Automated - working on your project from one computer to another, or on multiple machines should be
automated to avoid any human error when possible.

• Be Clean - setting up a project should follow the “nuke and pave” paradigm, meaning that it can always be setup
from a clean state.

3

gs-project-manager Docs, Release 0.1

• Be Traceable - your project configuration changes with you, and version control can be used to historically tell
the story of the project.

• Be Simple - it should be easy to use, but robust enough for people to have full control over their entire project
ecosystem.

• Be Team Friendly - team members working on multiple parts of the project should be transparent. The tool
should be flexible to ensure that slight changes to one members environment does not cause pain for another.
An example of this is the type of computer a developer is using. The tool should work the same on Linux as it
does on a Mac or PC.

4 Chapter 1. About

CHAPTER 2

Installation

If you are familiar with running Python you should have no problem getting gspm installed quickly.

The tool should run on any Windows, Mac or Linux machine, with a version of Python of at least 3.4 or greater.

You can use a Virtual Environment if you want to, but it is not a requirement.

2.1 Install With Pip

To install the package using pip, you should run the following command.

> pip install gspm

If you want to upgrade in the future, you can run this command.

> pip install --upgrade gspm

2.2 Post Installation

To verify you have it installed, simply issue the following command to tell you the version that is running.

> gspm --version

If things are setup correctly, you should see something similar to below.

Congratulations, you have just made your managing your Godot projects easier.

5

gs-project-manager Docs, Release 0.1

6 Chapter 2. Installation

CHAPTER 3

Tappy Plane Example

As a simple way to show how to use the tool, we have taken the Tappy Plane example project and converted it to use
gspm.

Before starting, you should make sure you have installed the tool. You will also need to be familiar with GIT, and
make sure that it is installed as well.

3.1 Clone The Project

Use git to Clone the project to a directory of your choice.

> git clone https://gitlab.com/godot-stuff/gs-tappy-plane.git

3.2 Change To Project Directory

It is usally best to execute commands from within the folder of the project where your configuration file exists. There
are alternatives, but those are more advanced.

> cd gs-tappy-plane

3.3 Install Project Components

Before you start working on your project you need to install the components of your project. This would include the
version of Godot you need and also any additional Assets that you have added to your project configuration.

> gspm install

7

gs-project-manager Docs, Release 0.1

3.4 Edit The Project

You can start the Editor from the command line by using the Edit command. This will run the version of Godot you
specified in the project and will open the Editor automatically.

> gspm edit

3.5 Run The Project

Sometimes you just want test the project without going into the Editor. This can be done by using the Run command.

Tip: You must make sure you Edit the project at least once before trying to Run it. This will ensure that all resources
are imported correctly.

> gspm run

8 Chapter 3. Tappy Plane Example

CHAPTER 4

Command

This tool is controlled exclusively from a command line. The example given will usually show commands running in
a Windows environment, but they will do the same thing on the Mac and in Linux.

gspm [options] <command>

4.1 Options

-V, --version

Show the Version and Exit.

-h, --help

Show the Help and Exit.

-c, --config {CONFIG}

Use a specific Configuration file. The default is project.yml.

-f, --force

Force a command to execute with Warnings. Use this when you are sure of what you are doing.

--verbose, --more-verbose

Change the level of messages generated when executing.

--quiet

Only the most important Messages, Errors and Warnings will show. The logo will also be supressed.

9

gs-project-manager Docs, Release 0.1

4.2 Commands

4.2.1 Clean

Remove all assets from the Project and Repository, but leave the Godot executable in the repository. This is useful
when you want to reinstall your assets if you know there are updates.

When the addons folder is empty after cleaning, it will also be removed from the project folder.

Note: Inactive assets are not included in this cleanup.

Note: When you have removed an asset from your project configuration, it will not be able to clean it up, and you
will have to do this manually.

4.2.2 Edit

Starts the GODOT editor and opens your project.

4.2.3 Export

Exports your project with the configuration specified.

name

The name of the export you want to use from your configuration file.

4.2.4 Install

Pulls Godot and the other Assets specified in the projects configuration file.

--headless

When installing, use the headless version of Godot. This is useful when you want to build your game from a continuous
integration server.

4.2.5 New

Create a new project for Godot.

-t {name}, --template {name}
Use a Template when creating new project.

4.2.6 Run

Run the project using the Startup scene.

10 Chapter 4. Command

gs-project-manager Docs, Release 0.1

4.2.7 Test

Run unit tests for your project.

4.2.8 Update

Update your project assets.

4.3 Examples

edit using the configuration file my_project.yml
gspm -c my_project.yml edit

4.3. Examples 11

gs-project-manager Docs, Release 0.1

12 Chapter 4. Command

CHAPTER 5

Project

The project package uses a YAML file that contains information which defines the components of your project. YAML
is a very simple file format to read and edit. If you are not familiar with Yaml, please introduce yourself here. By
default, gspm will look for a file called project.yml in the current directory, however you can override this using the
--config option.

The file has a very simple structure which breaks up the project into two sections. For a more detailed look at the
project definition file, see the [Schema Reference page](schema).

5.1 Main Section

The first section is used to give some basic information about the project like the name, what version of Godot should
be used and so on. In the example below, you can see that this project is using the latest stable 32bit version, and that
any asset in the project will default to using git.

name: my-cool-game
description: My Very Cool Game
default_type: git
godot:

version: 3.3
arch: 64

5.2 Assets Section

This section contains information about the different Assets to include in your project. Assets can be anything you
want, but usually it is just some other source code or maybe another project folder on your computer, or perhaps it is
something from the Godot Asset Library. The example below shows some examples of what you can include. The
first is used to copy a folder from another project on your computer, the next is used to pull a zip file from the internet,
and the last example will pull some code down from a git repository.

13

https://yaml.org/

gs-project-manager Docs, Release 0.1

assets:

some-local-asset:
location: file://some.path/on.my/desktop
type: copy
includes:
- dir: some/path
- todir: another/path

some-zip-asset:
location: https://some.path/file.zip
type: zip
active: false

some-asset-on-github:
location: https://github.com/some/asset.git
includes:
- dir: addons

5.3 Export Section

This section contains information to assist you when exporting your project from the command line.

exports:

windows:
name: win
path: ./build/win
file: test_game.exe

themac:
name: mac
path: ./build/mac
file: test_game.app

5.4 Replacement Tokens

The tool lets you put replacement tokens inside your project.yml file.

This is a convenient way to specify the values for options that might be different between developers. For example,
you might not want to pull the godot engine down all the time and instead share a copy you have on your computer
using the local parameter on the Godot option in your project.yml file.

However, one person might be using a Mac version of Godot, whereas another person might be using Windows. The
replacement Tokens are specified in your .gspm settings file in your Home folder.

For more information on this file, read the documentation on settings.

A Token, is specified in the tokens section of your file, and are specified using a String value, surrounded by dollar
signs. For example;

name: my-cool-game
description: My Very Cool Game

(continues on next page)

14 Chapter 5. Project

gs-project-manager Docs, Release 0.1

(continued from previous page)

default_type: git
godot:

local: $godot_306$

In your configuration file, you might have this;

[tokens]
$godot_306$=c:\godot-3.0.6\godot.exe
$godot_31a$=c:\godot-3.1a1\godot.exe

When the tool executes, it will search through all replacement Tokens in your configuration file, and will replace them
in your project.yml file before it begins running the command you have requested.

In the example above, the project file will be changed to this before it executes.

name: my-cool-game
description: My Very Cool Game
default_type: git
godot:

local: c:\godot-3.0.6\godot.exe

5.4. Replacement Tokens 15

gs-project-manager Docs, Release 0.1

16 Chapter 5. Project

CHAPTER 6

YAML Schema Reference

This is a detailed reference guide for a gspm project file.

6.1 Project Information

name: string # required
description: string # optional
default_type: [type] # optional
version: string #optional

godot:
version: [version] # required
release: [release] # optional
arch: [arch] # optional
mono: boolean # optional
local: string # optional
location: string # optional (deprecated)

Option Description
name the name of the project
description a short description of the project
default_type the default Pull Types for assets
version a string representation of the version of this project
godot godot specifications

17

gs-project-manager Docs, Release 0.1

Godot Option Description
version the Godot Version to use when developing
release the :ref‘godot-release‘ to use (ex: beta1, rc1, rc3 and so on, default is blank)
arch 32 or 64 bit Godot Architecture
mono use the mono build (default is false)
local use this local binary instead (will override other options)
location use this local binary instead (will override other options) deprecated

6.2 Asset Information

assets: # required

name: # required
location: uri # required
type: [type] # optional
active: boolean # optional
branch: string # optional
includes:
- dir: string # optional
todir: string # optional

Option Description
name the name of the asset
location the uniform resource identifier <https://en.wikipedia.org/wiki/Uniform_Resource_Identifier> of the file
type the type of asset to pull, see Pull Types
active should this asset be included (default is true)
branch name of the branch to pull (default is master)
includes what directory or directories to include

Include Option Description
dir name of the directory to include
todir destination directory of include

6.3 Attributes

6.4 Godot Version

You can specify which version of Godot your project is using.

Value Description
latest latest supported version (default)
x.x Major Minor (eg 2.0, 3.0)
x.x.x Major Minor Revision (eg 2.0.1, 3.0.6)

18 Chapter 6. YAML Schema Reference

gs-project-manager Docs, Release 0.1

6.5 Godot Release

You can specify which release of a version of Godot your project is using.

Value Description
stable stable version (default)
betaX beta releases (eg beta1, beta2)
rcX release candidate (eg rc1, rc2, rc3)

6.6 Godot Architecture

Godot is available in either 32 or 64 bit. You can specify which architecture you prefer by adding this attribute.

Value Description
32 32 bit version
64 64 bit version (default)

6.7 Pull Types

Each asset is pulled from some type of Source and that Source needs to be identified in some way to determine how
to pull it down. This is specified using the Type attribute on each Asset. These are the different types that you can
specify.

Value Description
git asset comes from a git repository (default)
copy copy assets from a local folder on your computer
zip extract from a zip file

6.5. Godot Release 19

gs-project-manager Docs, Release 0.1

20 Chapter 6. YAML Schema Reference

CHAPTER 7

Settings

The settings file is a basic configuration or .ini file which contains a number of sections, followed by a number of key
value pairs.

7.1 Location

When gspm starts up, it will look in these locations for a file called .gspm. If no file is found, it will simply use the
default settings that are programmed into the tool.

On Windows, this is usually located in the value of the environment variable %USERPROFILE%, on Windows 10,
this is at

c:\users\username

For Mac and Linux users, this is usually the value in your $HOME environment variable, sometimes at

/home/username

7.2 General Section

This section contains a number of basic settings that are used when you create a project using the NEW command.

[general]
author=sP0CkEr2
copyright=Copyright 2020, SpockerDotNet LLC.
email=paul@spocker.net
twitter=https://twitter.com/sP0CkEr2
license=MIT

21

gs-project-manager Docs, Release 0.1

7.3 Godot Section

When creating a new projects, the settings in this section will control what version of Godot you want to use. Refer to
the project configuration documentation for information on what values you can place here.

[godot]
version=3.2.3
arch=64
mono=false

7.4 Tokens Section

You can add replacement tokens in this section of the settings file. Remember that replacement tokens can be use
anywhere in your settings file, but are mostly used to control the local setting of the godot engine configuration in your
projects.

[tokens]
$godot_214$=c:\users\paul\development\tools\godot\godot-2.1.4\godot.exe
$godot_323$=c:\users\paul\development\tools\godot\godot-3.2.3.exe
214=c:\users\paul\development\tools\godot\godot-2.1.4\godot.exe
306=c:\users\paul\development\tools\godot\godot-3.0.6\godot.exe
311=c:\users\paul\development\tools\godot\godot-3.1.1\godot.exe
323=c:\users\paul\development\tools\godot\godot-3.2.3.exe
$build$=c:\users\paul\workspace\godot\bin\godot.windows.tools.64.exe

22 Chapter 7. Settings

Index

Symbols
-headless

command line option, 10
-quiet

command line option, 9
-verbose, -more-verbose

command line option, 9
-V, -version

command line option, 9
-c, -config {CONFIG}

command line option, 9
-f, -force

command line option, 9
-h, -help

command line option, 9
-t {name}, -template {name}

command line option, 10

C
command line option

-headless, 10
-quiet, 9
-verbose, -more-verbose, 9
-V, -version, 9
-c, -config {CONFIG}, 9
-f, -force, 9
-h, -help, 9
-t {name}, -template {name}, 10
name, 10

N
name

command line option, 10

23

	About
	Installation
	Tappy Plane Example
	Command
	Project
	YAML Schema Reference
	Settings
	Index

